

Getting started with Python and PyLink

SR Research Ltd., Ottawa, Canada

Last updated: September 26, 2024

1 Choose a library to build your experimental tasks 1

2 Install Python and Python modules 2

2.1 Install Python 2

2.2 Install Python modules 3

2.2.1 Install Python modules on macOS / Linux 3

2.2.2 Install Python modules on Windows 4

2.2.3 Install pygame 4

3 Install the EyeLink Developers Kit and PyLink 5

3.1 Install the EyeLink Developers Kit 5

3.2 Configure the IP address of the Display PC 5

3.3 Install and configure PyLink 5

3.3.1 Install the PyLink library using pip 5

3.3.2 Manually install the PyLink library 6

4 Example Scripts 7

4.1 Scripts that do not require a multimedia library 7

4.2 Scripts that require PsychoPy or Ppygame 8

4.3 Run an example script on Windows 10

4.3.1 Run a PsychoPy example script 10

4.3.2 Run a pygame example script 10

4.4 Run an example script on macOS 10

4.5 Run an example script on Ubuntu / Linux 10

5 Example script walk-throughs 10

5.1 Set up an EDF data file name 11

5.2 Connect to the tracker 12

5.3 Open an EDF data file 13

5.4 Configure the tracker 13

5.5 Open a window 14

5.6 Calibration graphics library 15

5.7 Helper functions 17

5.8 Calibrate the tracker 18

5.9 Run through all trials 18

5.10 The run_trial() function 19

5.10.1 Backdrop on the Host 19

5.10.2 TRIALID message 20

5.10.3 Record status message 21

5.10.4 Drift-check / drift-correction 21

5.10.5 Data recording 22

5.10.6 Logging messages 23

5.10.7 The TRIAL_RESULT message 24

5.10.8 The terminate_task() function 24

6 Known issues and trouble-shooting tips 25

6.1 PsychoPy issues 25

6.1.1 Retina displays 25

6.1.2 PsychoPy window loses focus 27

6.1.3 PsychoPy keyboard locks up on macOS 28

6.2 pygame issues 28

6.2.1 pygame not accepting any keyboard inputs 28

6.2.2 The “pygame parachute” error 28

1 Choose a library to build your experimental tasks

A computer-based experimental task is essentially a “video game”. Visual and auditory stimuli

are presented, and the participants respond to various task manipulations with a keyboard, a

mouse, or a gamepad. In principle, one can use any multimedia library to program an

experimental task, though some libraries may not be suitable for tasks that require precise

timing. There are many multimedia libraries that one can use to program experimental tasks in

Python, such as pygame and pyglet.

Some libraries are explicitly built for psychology experiments and included primarily as an

integrated part of complete application suites (for example, PsychoPy, expyriment, Vision EGG,

and OpenSesame). Those application suites are a popular choice among many Python users

as they are feature-enriched with carefully implemented methods for experimental purposes, for

example, a staircase procedure or complex visual stimuli (e.g., checkerboards and gratings).

The graphical interface for experimental design provided by those application suites is a leading

reason many users choose to use these applications because an intimate knowledge of EyeLink

integration conventions via PyLink scripting is not part of their typical use.

Although this document is otherwise primarily intended for users who do wish to design their

experiments by means of writing their own scripted code, there is nonetheless a degree of

overlap in the utility of information below and some users of the aforementioned application

suites. For example, PsychoPy users who use its Coder interface, or those who use its Builder

interface and also choose to adapt an element of Python scripting using Code Components can

still benefit from some of the information below.

The EyeLink Developers Kit comes with various sets of example projects demonstrating the

various ways EyeLink integration can be accomplished using some of these application suites.

More information relating to using these applications for EyeLink experiments can be found on

our support forums, here:

- Getting Started with PsychoPy / EyeLink Integration

- Getting Started with OpenSesame

Otherwise the following information in this document is more generalized, and covers the core

principles for using PyLink, from installation through to implementation of EyeLink integrations

within the context of basic Python environments and extensions thereof including virtual

environments such as those using venv or Conda. In this capacity, the PyLink integrations

discussed below largely use the pygame library (its use, like PyLink is also agnostic to the

Python-environment in which it is used) as an exemplary multimedia library as the tool through

which PyLink effects its audiovisual presentation for experimental display.

https://www.psychopy.org/
https://expyriment.org/
https://visionegg.org/
https://osdoc.cogsci.nl/
https://www.sr-research.com/support/thread-7525.html
https://www.sr-research.com/support/thread-52.html

pygame is an excellent choice in this regard providing a lightweight solution for many research

projects. The EyeLink Developers Kit also comes with a set of examples demonstrating pygame

integration as well, which will be further elaborated in detail below in this document. You will

also find examples for other Python-based task creation tools, such as OpenSesame, on the SR

Research Support Forum (https://www.sr-research.com/support/thread-52.html).

2 Install Python and Python modules

Python is a popular high-level programming language in scientific computation. There are quite

a few distributions (e.g., Anaconda, Canopy), which bundle features and packages that are not

part of the official Python distribution. This guide will assume that you would use the official

Python distribution that is freely available from https://www.python.org, or you are using the

Standalone version of PsychoPy, which bundles a copy of Python. As support for Python 2 has

ended, here we assume you are using Python 3 instead.

This short guide will not cover the syntax and building blocks of the Python language. For

beginners, the official Python tutorial is what we would recommend

(https://docs.python.org/3/tutorial/).

2.1 Install Python

Your Mac may ship with Python 3 pre-installed by default. To check if Python has been

installed, launch a terminal and type python3 at the command line prompt (see the output

below). If you do not have Python 3 on your Mac, please download the installer from

https://www.python.org/downloads/mac-osx/ and install it. Note with version 2.1.762 or later of

EyeLink Developers Kit, the PyLink library will work with versions of Python installed with the

Intel Installer or the universal2 installer for Macs.

eyelink@eyelinks-MacBook-Pro ~ % python3

Python 3.7.9 (v3.7.9:13c94747c7, Aug 15 2020, 01:31:08)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

If you use Ubuntu or another Debian-based Linux distribution, run the following command in a

terminal to install Python 3.6 or a later version (Ubuntu now bundles with Python 3 by default).

sudo apt-get install python3.6

To install Python 3 on a Windows PC, please download the relevant installer

(https://www.python.org/downloads/windows/).

https://www.sr-research.com/support/thread-52.html
https://www.python.org/
https://docs.python.org/3/tutorial/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/windows/

2.2 Install Python modules

Thousands of Python modules (libraries) are actively developed and maintained by the

community. The preferred installer for Python modules is pip, which has been part of the official

Python distribution since version 2.7.9. A complete guide on pip can be found on Python.org,

https://docs.python.org/3/installing/index.html. Here we will give a very brief discussion on pip,

with example commands.

2.2.1 Install Python modules on macOS / Linux

On macOS and Linux systems, the pip install command takes the following format.

python3 -m pip install SomePackage --user

The above command will install a (or multiple) module(s) for the default Python 3 version on

your computer. The above example uses the –user flag for installation into the current user’s

HOME directory path where Python libraries can be installed without root access. This

installation method is most commonly used and secured against making system-wide changes.

For more information the related section of the official pip User Guide can be further consulted,

here: https://pip.pypa.io/en/stable/user_guide/#user-installs.

In other installation scenarios (e.g., to obtain administrator privilege on macOS and Linux), you

may need to add sudo before the command if your desire is to perform the installation into

Python’s system-wide packages available for all users. If you are installing modules for a

particular version of Python (e.g., when you have multiple versions installed on your computer),

the recommended command takes the following format. The python3 command now includes

an extra version number (e.g., python3.7, python3.9).

python3.x -m pip install SomePackage --user

The pip command, by default, will install the latest version of a module. If you would like to

install a particular version of a module you can include the module version number in the

command. For instance, the example command below will install pygame 1.9.6 instead of the

latest version (2.x).

eyelink@eyelinks-Mac-mini-3 ~ % python3.6 -m pp install pygame==1.9.6

/Library/Frameworks/Python.framework/Versions/3.6/bin/python3.6: No module named pp

eyelink@eyelinks-Mac-mini-3 ~ % python3.6 -m pip install pygame==1.9.6

Collecting pygame==1.9.6

 Downloading pygame-1.9.6-cp36-cp36m-macosx_10_11_intel.whl (4.9 MB)

 |████████████████████████████████| 4.9 MB 109 kB/s

Installing collected packages: pygame

Successfully installed pygame-1.9.6

https://docs.python.org/3/installing/index.html
https://pip.pypa.io/en/stable/user_guide/%23user-installs

It is important to upgrade your pip to the latest version (see the command below) so that it

recognizes universal2 tagged wheel files on macOS and manylinux tagged wheel files on Linux

as they are used in the PyLink packages bundled with the version 2.1.762 or later of EyeLink

Developers Kit and/or those published to pypi.org. The universal2 wheel files support both Intel

x86_64 (which loads on Intel machines, and on Apple Silicon when running non-universal2 Intel

Python versions under Rosetta 2 emulation) and arm64 (which is native for macOS on Apple

Silicon) architectures.

python3.6 -m pip install --upgrade pip --user

Note the --upgrade pip option doesn’t work with earlier version of Python 2.7. If you are using an

old version, first download https://bootstrap.pypa.io/pip/2.7/get-pip.py, then run python2.7

get-pip.py from shell to install the latest pip version for Python 2.7.

2.2.2 Install Python modules on Windows

On Windows, the py launcher is now the recommended method for launching Python. So, py -3

will launch the default Python 3 on your system, and py -3.8 will launch Python version 3.8.

Consequently, the pip command will take the following format.

py -3.x -m pip install SomePackage

2.2.3 Install pygame

To install pygame, simply run the pip command matching the recommended syntax above. For

example, the command shown in the screenshot below installs pygame (version 1.9.6) for

Python 3.7 on a Windows 11 machine.

For more general information about the pygame project, see their Getting Started Wiki.

https://bootstrap.pypa.io/pip/2.7/get-pip.py
https://www.pygame.org/wiki/GettingStarted

3 Install the EyeLink Developers Kit and PyLink

3.1 Install the EyeLink Developers Kit

EyeLink eye trackers come with an application programming interface (API, included in the

EyeLink Developers Kit), which allows users to develop custom eye tracking applications. The

Python wrapper of this API is the PyLink library, which is compatible with both Python 2 and 3.

To use PyLink, you need first to install the latest version of the EyeLink Developers Kit, which

works on all major platforms (Windows, macOS, and Ubuntu). Windows and macOS installers

for the EyeLink Developers Kit are freely available from the SR Support Forum (https://www.sr-

research.com/support/thread-13.html). For users of Debian-based Linux distributions including

Ubuntu, please see the posted installation guide on the SR Support Forum (https://www.sr-

research.com/support/docs.php?topic=linuxsoftware). Once you have configured the software

repository on your Ubuntu machine, you can run the following commands to install the EyeLink

Developers Kit, and of course, the PyLink library.

sudo apt install eyelink-display-software

3.2 Configure the IP address of the Display PC

A typical setup of an EyeLink tracker involves two computers, a Host PC for eye tracking data

registration and a Display PC for stimulus presentation. The Display PC communicates with the

Host PC through an Ethernet connection. For successful Ethernet communication between the

two computers, the Display PC has to be on the same network as the Host PC. One frequently

seen difficulty when connecting to the tracker is caused by failing to set the IP address

configuration on the Display PC. Following the EyeLink Installation Guide (https://www.sr-

research.com/support/thread-281.html), the Display PC IP address is typically set to 100.1.1.2,

and the subnet mask should be 255.255.255.0 – N.B. the network configurations may differ from

these defaults in setups with other network-synchronized hardware, most often with EEG

integrations. See https://www.sr-research.com/support for more information.

3.3 Install and configure PyLink

3.3.1 Install the PyLink library using pip

PyLink is now hosted on the well-known PyPI Python Package Index (c.f. https://pypi.org) for

the easiest installation on computers with internet connectivity.

https://www.sr-research.com/support/thread-13.html
https://www.sr-research.com/support/thread-13.html
https://www.sr-research.com/support/thread-281.html
https://www.sr-research.com/support/thread-281.html
https://www.sr-research.com/support

pip install sr-research-pylink --user

In addition to the above online installation, the PyLink library is also included in the EyeLink

Developers Kit as Python wheel files (in the wheels' folder) for offline installation. Separate

wheel files are provided for different versions of Python and architectures. You can use pip to

install these locally available wheel files by executing a command in a Windows Command

prompt or a macOS / Ubuntu terminal (may require administrative privilege). Please replace

*.whl with the absolute or relative path to a specific wheel file with the filename tagged

accordingly to match the version of python and architecture you plan to use, for example,

sr_research_pylink-2.1.731.0-cp38-cp38-

macosx_10_9_universal2.macosx_11_0_universal2.whl.

pip install *.whl –user

or in expanded form:

pip install sr_research_pylink-2.1.731.0-cp38-cp38-macosx_10_9_universal2.macosx_11_0_universal2.whl --user

Please note on macOS the Pylink wheels files that bundled with version 2.1.762 or

later of the EyeLink Developers Kit use the “universal2” tag so that they support

both Intel x86_64 and arm64 architectures. If you are seeing an error message

“*universal2.whl is not a supported wheel on this platform”, you will need to

update pip to the latest version. Please follow Section 1.2 for instructions using

pip installation for the particular Python and operating systems you use.

3.3.2 Manually install the PyLink library

You can, of course, manually install PyLink by copying the PyLink library to the Python site-

packages folder (Windows and macOS) or the dist-package folder (Ubuntu / Linux). If you are

unsure about where to find the site-package or dist-package folder, open a Python shell, then

type in the following commands to show the Python paths. On my MacBook, I have the following

output in the Python shell.

eyelink@eyelinks-MacBook-Pro ~ % python3.8

Python 3.8.7 (v3.8.7:6503f05dd5, Dec 21 2020, 12:45:15)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>import site

>>>site.getsitepackages()

['/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages']

Once you have located the site-package folder, navigate to the folder that contains the pylink

library, then copy the pylink library to the site-packages folder. On macOS or Linux, use the cp

command with the -R option (copy recursively, i.e., copy the folder and its contents).

cp -R pylink /Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages

4 Example Scripts

SR Research provides two sets of example scripts as part of the EyeLink Developers Kit. You

can find these examples in the following folders.

Windows: C:\Program Files (x86)\SR Research\Eyelink\SampleExperiments\Python\examples

macOS: /Applications/Eyelink/SampleExperiments/Python/examples

Linux: /usr/share/EyeLink/SampleExperiments/Python/examples

4.1 Scripts that do not require a multimedia library

It is possible to run some of the scripts without installing additional Python multimedia libraries

(e.g., pygame or experimental design application suites like PsychoPy, OpenSesame etc.). The

examples in the linkEvents, and linkSample folder fall into this category. Please see below for a

brief summary of these examples.

● linkEvent -- This script shows the frequently used commands for connecting to the

tracker, configuring tracker parameters, starting/ending recording, and messaging for

event logging. Most importantly, this script shows how to retrieve eye events (Fixation

Start / End, Saccade Start / End, etc.) during data recording from the stimulus

presentation PC.

● linkSample -- This script shows the frequently used commands for connecting to the

tracker, configuring tracker parameters, starting/ending recording, and messaging for

event logging. Most importantly, this script shows how to retrieve samples (time stamped

gaze position, pupil size, etc.) in real-time during data recording.

Please note presently the linkSample and linkEvent examples still use calibration graphics that

are not compatible with the Arm64 architecture. Therefore, you will see the following error when

running the two examples with Python 3.10, 3.11, or 3.12 on Macs that use Apple Silicon M1 or

M2 chips. The examples will run fine once the graphics functions are removed.

eyelink@eyelinks-MacBook-Pro linkEvent % python3.11 link_event.py

displayAPI: Connecting
Traceback (most recent call last):

 File
"/Users/eyelink/Documents/SampleExperiments_2023_06_19/Python/examples/linkEvent/link_event.
py", line 532, in <module>
 pylink.openGraphics((SCN_WIDTH, SCN_HEIGHT), 32)
 File "/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-
packages/pylink/eyelink.py", line 1055, in openGraphics
 import pylink.pylink_cg
ImportError: dlopen(/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-
packages/pylink/pylink_cg.cpython-311-darwin.so, 0x0002): tried:
'/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-
packages/pylink/pylink_cg.cpython-311-darwin.so' (mach-o file, but is an incompatible
architecture (have 'x86_64', need 'arm64')),
'/System/Volumes/Preboot/Cryptexes/OS/Library/Frameworks/Python.framework/Versions/3.11/lib/
python3.11/site-packages/pylink/pylink_cg.cpython-311-darwin.so' (no such file),
'/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-
packages/pylink/pylink_cg.cpython-311-darwin.so' (mach-o file, but is an incompatible
architecture (have 'x86_64', need 'arm64'))

4.2 Scripts that require PsychoPy or Ppygame

In a typical experimental task, one may use a dedicated library for graphics generation,

keyboard response collection, etc. There are lots of free (or open source) Python libraries that

one can use for this purpose. Here we provide examples for PsychoPy and pygame to illustrate

the eye tracker integration with a Python-based programming tool through the PyLink library.

Note that for both the PsychoPy and pygame examples, there is an accompanying library in the

same folder as the example script, e.g., EyeLinkCoreGraphicsPsychoPy.py. There are also

three .wav files that this .py library depends on. This .py library and the .wav files are needed for

tracker calibration (for a brief discussion on this library, see Section 5.6 Calibration graphics

library). You don’t need to change these files in any way, but please include them in your

experimental scripts folder.

Two sets of examples are provided for PsychoPy: Coder and Builder examples (under

“Python\examples\Psychopy_examples”). The “Coder” folder provides examples created using

only Python code. The “Builder” folder provides some examples for experimental tasks built in

PsychoPy’s GUI-based environment by dragging and dropping functional components onto a

timeline. In the Builder examples discussed herewith, the EyeLink integration is accomplished

using Builder’s “Code Component” with scripted use of PyLink.

In PsychoPy's Builder environment, an alternative option for adding EyeLink integration is to use

the EyeLink Plugin for PsychoPy, which provides EyeLink-specific GUI components that

perform the EyeLink functions without the use of any Python scripting. Please refer to Getting

Started with PsychoPy / EyeLink Integration for more information about the EyeLink Plugin.

A UsingPylinkFromPsychoBuilder.pptx file can also be found in the “Builder” folder – it provides

an overview of the Psychopy Builder interface and discusses a few critical components

implemented for the proper integration with the EyeLink eye tracker and Data Viewer software.

https://www.sr-research.com/support/thread-7525.html
https://www.sr-research.com/support/thread-7525.html

Please see below for descriptions of the examples in the PsychoPy_examples and

pygame_examples folders.

● fixationWindow_fastSamples / EyeLinkFixationWindowFastSamples_Builder -- This is a

basic example, which shows how to implement a gaze-based trigger. We first show a

fixation cross at the center of the screen. A trial will move on only when the gaze has

been directed to the fixation cross. We then show a picture and wait for the participant to

issue a keypress response, or until 5 seconds have elapsed.

● GC_window / EyeLinkGCWindow_Builder -- This example shows how to manipulate the

visual stimuli based on real-time gaze data. A mask is shown at the current gaze

position in the "mask" condition; in the "window" condition, the image is masked, and a

window at the current gaze position will reveal the image hidden behind the mask.

● MRI_demo / EyeLinkMRIdemo_Builder -- This is a basic example illustrating how to do

continuous eye tracker recording through a block of trials (e.g., in an MRI setup), and

how to synchronize the presentation of trials with a sync signal from the MRI. With a long

recording, we start and stop recording at the beginning and end of a testing session

(run), rather than at the beginning and end of each experimental trial. We still send the

TRIALID and TRIAL_RESULT messages to the tracker, and Data Viewer will still be able

to segment the long recording into small segments (trials).

● picture / EyeLinkPicture_Builder -- This is a basic example, which shows how to connect

to and disconnect from the tracker, how to open and close data files, how to start / stop

recording, and the standard messages for integration with the Data Viewer software. We

show four pictures one-by-one on each trial, and a trial terminates upon a keypress

response or until 3 secs have elapsed.

● pursuit / EyeLinkPursuit_Builder -- This example shows how to record the target position

in a smooth pursuit task. This script also shows how to record dynamic interest area and

target position information to the EDF data file so Data Viewer can recreate the interest

area and playback the target movement.

● saccade / EyeLinkSaccade_Builder -- This example shows how to retrieve eye events

(saccades) during testing. A visual target appears on the left side, or right side of the

screen and the participant is required to quickly shift gaze to look at the target (pro-

saccade) or a mirror location on the opposite side of the central fixation (anti-saccade).

The Coder and Builder folders of the PsychoPy_examples folder also include an example on

video playback.

● video / EyeLinkVideo_Builder -- This example shows how to present video stimuli and

how to log frame information in the EDF data file so the gaze data can be correctly laid

over the video in Data Viewer

4.3 Run an example script on Windows

4.3.1 Run a PsychoPy example script

If you use the standalone version of PsychoPy, simply open the script in Coder and click the

Run button on the toolbar.

4.3.2 Run a pygame example script

You can run a pygame example script from the Command Prompt. Open a Command Prompt,

by searching for “cmd” from the Start menu. Assume that we have the picture example on the

Desktop, the following command will run the picture.py script with Python 3.6 from the

Command window.

py -3.6 Desktop\picture\picture.py

You may open the script in the default Python IDE (IDLE) and run the script from there.

However, we would not recommend this approach as we have seen performance issues in the

past (e.g., slow file transfer at the end of an experiment).

4.4 Run an example script on macOS

On macOS, you can launch a PsychoPy script from the Coder interface of PsychoPy. If you

installed PsychoPy as a Python module, you can launch a PsychoPy example script from the

terminal.

For pygame, please launch the script from the terminal. For instance, assume I have the picture

example folder in the Desktop folder, the following command will run the picture.py script with

Python 3.8. In this command, ~ represents the home folder of the current user.

python3.8 ~/Desktop/picture/picture.py

4.5 Run an example script on Ubuntu / Linux

On Ubuntu, you can launch an example script from the terminal.

5 Example script walk-throughs

The example scripts are heavily commented. There is no need to go through all the PsychoPy

and pygame examples for an introduction to PyLink usage. Here we will walk-through the

picture.py script from the PsychoPy_examples/Coder folder, just to illustrate the basic usage of

the PyLink library and the critical steps / protocols for Data Viewer integration.

5.1 Set up an EDF data file name

At the beginning of the script, we first prompt the experimenter to specify an EDF data filename.

The filename should not exceed 8 characters and should only contain letters, numbers, and

underscores (_). In the script, we have also set up a few folders to store the data file and the

resources (e.g., images) we used in the experiment.

Set up EDF data file name and local data folder

The EDF data filename should not exceed 8 alphanumeric characters

use ONLY number 0-9, letters, & _ (underscore) in the filename

edf_fname = 'TEST'

Prompt user to specify an EDF data filename

before we open a fullscreen window

dlg_title = 'Enter EDF File Name'

dlg_prompt = 'Please enter a file name with 8 or fewer characters\n' + \

 '[letters, numbers, and underscore].'

loop until we get a valid filename

while True:

 dlg = gui.Dlg(dlg_title)

 dlg.addText(dlg_prompt)

 dlg.addField('File Name:', edf_fname)

 # show dialog and wait for OK or Cancel

 ok_data = dlg.show()

 if dlg.OK: # if ok_data is not None

 print('EDF data filename: {}'.format(ok_data[0]))

 else:

 print('user cancelled')

 core.quit()

 sys.exit()

 # get the string entered by the experimenter

 tmp_str = dlg.data[0]

 # strip trailing characters, ignore the ".edf" extension

 edf_fname = tmp_str.rstrip().split('.')[0]

 # check if the filename is valid (length <= 8 & no special char)

 allowed_char = ascii_letters + digits + '_'

 if not all([c in allowed_char for c in edf_fname]):

 print('ERROR: Invalid EDF filename')

 elif len(edf_fname) > 8:

 print('ERROR: EDF filename should not exceed 8 characters')

 else:

 break

5.2 Connect to the tracker

The Display PC connects to the EyeLink Host PC through an Ethernet cable. At the beginning of

an eye-tracking experiment, we need to establish an active connection to the Host PC. Without

this connection, the experimental script cannot send over commands to control the tracker, nor

can it receive gaze data from the eye tracker. The command for initializing a connection is

pylink.EyeLink(). This command takes just one parameter, the IP address of the Host PC. If you

omit the IP address, this method will use the default address of the EyeLink Host PC, which is

100.1.1.1.

The command pylink.EyeLink() returns an EyeLink object (i.e., el_tracker in the example code

below), which has a set of methods that we can use to control the tracker. Once there is an

active connection, the EyeLink Host PC status will switch to “TCP / IP Link Open” (shown in the

top-right corner of the Host PC screen).

Step 1: Connect to the EyeLink Host PC

The Host IP address, by default, is "100.1.1.1".

the "el_tracker" objected created here can be accessed through the PyLink

Set the Host PC address to "None" (without quotes) to run the script

in "Dummy Mode"

if dummy_mode:

 el_tracker = pylink.EyeLink(None)

else:

 try:

 el_tracker = pylink.EyeLink("100.1.1.1")

 except RuntimeError as error:

 print('ERROR:', error)

 core.quit()

 sys.exit()

The eye-tracker in your lab may not always be available, or you may find it more convenient to

debug your experimental script on a computer that is not physically connected to the EyeLink

Host PC. If your script does not rely on real-time eye movement data, you can toggle the

dummy_mode variable to True to open a simulated connection to the tracker.

Set this variable to True to run the script in "Dummy Mode"

dummy_mode = False

...

If dummy_mode:

 el_tracker = pylink.EyeLink(None)

5.3 Open an EDF data file

The EyeLink Host PC is a machine dedicated to eye-tracking and data logging. At the beginning

of a new testing session, we open a data file on the Host PC to store the eye movement data.

The data file can be retrieved from the Host PC at the end of a testing session, after closing the

data file. For backward compatibility, the EDF file name should not exceed eight characters (not

including the .edf extension). To open an EDF data file on the Host PC, use the openDataFile()

command.

Step 2: Open an EDF data file on the Host PC

edf_file = edf_fname + ".EDF"

try:

 el_tracker.openDataFile(edf_file)

except RuntimeError as err:

 print('ERROR:', err)

 # close the link if we have one open

 if el_tracker.isConnected():

 el_tracker.close()

 core.quit()

 sys.exit()

It is a good practice to put some header information in the EDF data file. Otherwise, it is difficult

to tell which EDF data file belongs to which research project.

Add a header text to the EDF file to identify the current experiment name

This is OPTIONAL. If your text starts with "RECORDED BY " it will be

available in DataViewer's Inspector window by clicking

the EDF session node in the top panel and looking for the "Recorded By:"

field in the bottom panel of the Inspector.

preamble_text = 'RECORDED BY %s' % os.path.basename(__file__)

el_tracker.sendCommand("add_file_preamble_text '%s'" % preamble_text)

5.4 Configure the tracker

One may change the tracker parameters (e.g., sample rate) by clicking the relevant GUI buttons

on the EyeLink Host PC. However, a less error-prone approach is to configure tracker

parameters by sending commands to the Host PC with the sendCommand() method.

Step 3: Configure the tracker

Put the tracker in offline mode before we change tracking parameters

el_tracker.setOfflineMode()

Get the software version: 1-EyeLink I, 2-EyeLink II, 3/4-EyeLink 1000,

5-EyeLink 1000 Plus, 6-Portable DUO

EyeLink_ver = 0 # set version to 0, in case running in Dummy mode

if not dummy_mode:

 vstr = el_tracker.getTrackerVersionString()

 EyeLink_ver = int(vstr.split()[-1].split('.')[0])

 # print out some version info in the shell

 print('Running experiment on %s, version %d' % (vstr, EyeLink_ver))

File and Link data control

what eye events to save in the EDF file, include everything by default

file_event_flags = 'LEFT,RIGHT,FIXATION,SACCADE,BLINK,MESSAGE,BUTTON,INPUT'

what eye events to make available over the link, include everything by default

link_event_flags = 'LEFT,RIGHT,FIXATION,SACCADE,BLINK,BUTTON,FIXUPDATE,INPUT'

what sample data to save in the EDF data file and to make available

over the link, include the 'HTARGET' flag to save head target sticker

data for supported eye trackers

if EyeLink_ver> 3:

 file_sample_flags = 'LEFT,RIGHT,GAZE,HREF,RAW,AREA,HTARGET,GAZERES,BUTTON,STATUS,INPUT'

 link_sample_flags = 'LEFT,RIGHT,GAZE,GAZERES,AREA,HTARGET,STATUS,INPUT'

else:

 file_sample_flags = 'LEFT,RIGHT,GAZE,HREF,RAW,AREA,GAZERES,BUTTON,STATUS,INPUT'

 link_sample_flags = 'LEFT,RIGHT,GAZE,GAZERES,AREA,STATUS,INPUT'

el_tracker.sendCommand("file_event_filter = %s" % file_event_flags)

el_tracker.sendCommand("file_sample_data = %s" % file_sample_flags)

el_tracker.sendCommand("link_event_filter = %s" % link_event_flags)

el_tracker.sendCommand("link_sample_data = %s" % link_sample_flags)

Optional tracking parameters

Sample rate, 250, 500, 1000, or 2000, check your tracker specification

if EyeLink_ver> 2:

el_tracker.sendCommand("sample_rate 1000")

Choose a calibration type, H3, HV3, HV5, HV13 (HV = horizontal/vertical),

el_tracker.sendCommand("calibration_type = HV9")

Set a gamepad button to accept calibration/drift check target

You need a supported gamepad/button box that is connected to the Host PC

el_tracker.sendCommand("button_function 5 'accept_target_fixation'")

5.5 Open a window

We need to open a window to present the visual stimuli and to calibrate the tracker. Note here,

we need to send the correct screen resolution to the Host PC with the screen_pixel_coords

command and log this info in the EDF data file with a DISPLAY_COORDS message. The

DISPLAY_COORDS message will ensure the Trial View window is sized appropriately in Data

Viewer.

Open a window, be sure to specify monitor parameters

mon = monitors.Monitor('myMonitor', width=53.0, distance=70.0)

win = visual.Window(fullscr=full_screen,

 monitor=mon,

 winType='pyglet',

 units='pix')

get the native screen resolution used by PsychoPy

scn_width, scn_height = win.size

resolution fix for Mac retina displays

if 'Darwin' in platform.system():

 if use_retina:

 scn_width = int(scn_width/ 2.0)

 scn_height = int(scn_height / 2.0)

Pass the display pixel coordinates (left, top, right, bottom) to the tracker

see the EyeLink Installation Guide, "Customizing Screen Settings"

el_coords = "screen_pixel_coords = 0 0 %d %d" % (scn_width - 1, scn_height - 1)

el_tracker.sendCommand(el_coords)

Write a DISPLAY_COORDS message to the EDF file

Data Viewer needs this piece of info for proper visualization, see Data

Viewer User Manual, "Protocol for EyeLink Data to Viewer Integration"

dv_coords = "DISPLAY_COORDS 0 0 %d %d" % (scn_width - 1, scn_height - 1)

el_tracker.sendMessage(dv_coords)

One thing worth noting here is that there are a few lines of code that help to fix drawing issues

in PsychoPy when running on macOS with retina displays. If you are using PsychoPy and a

retina display, or you are connecting a Macbook laptop to an external monitor, please see

Section 6.1.1 for known issues and troubleshoot tips.

5.6 Calibration graphics library

With the EyeLink tracker, calibration is a two-step process: calibrating the tracker and evaluating

the calibration results using a validation procedure. Both steps involve presenting a series of

visual targets at different known screen positions. The observer is required to shift gaze to

follow the calibration target. The calibration process can use 3, 5, 9, or 13 screen positions. A 9-

point calibration (HV-9) will give you the best results if you use a chin rest to stabilize the head

of the observer. A 5-point (HV5) or 13-point calibration (HV13) will provide you with better

results when the head is free to move (i.e., tracking in Remote Mode). Following calibration,

there is a validation process in which a visual target appears at known screen positions, and the

observer shifts gaze to follow the target. By comparing the gaze position reported by the tracker

and the physical position of the target, the tracker can estimate the gaze errors at different

screen positions. This two-step procedure (calibration and validation) requires a single PyLink

command, e.g.,

el_tracker.doTrackerSetup()

We need to configure the calibration graphics (window) before we call this command. Note that

for both the PsychoPy and pygame examples, there is an accompanying library in the same

folder as the example script (EyeLinkCoreGraphicsPsychoPy.py or

CalibrationGraphicsPygame.py). There are also three .wav files that this .py library depends on.

Please do not change these files unless you know exactly what you are doing. The

EyeLinkCoreGraphicsPsychoPy.py is frequently referred to as a CoreGraphics library; it

implements a set of methods that will be used during calibration, validation, and drift-correction

etc. So, when the calibration routine is evoked, PyLink will use the methods defined in this

library to draw the camera image, the calibration/validation target, play the warning beeps, etc.

To use this library, we need to first import the EyeLinkCoreGraphicsPsychoPy class from it.

From EyeLinkCoreGraphicsPsychoPy import EyeLinkCoreGraphicsPsychoPy

Then, in the experimental script we create an instance of the EyeLinkCoreGraphicsPsychoPy

class, e.g.,

genv = EyeLinkCoreGraphicsPsychoPy(el_tracker, win)

Here, we pass the tracker connection (el_tracker) and the window we plan to use for calibration

when initializing the new EyeLinkCoreGraphicsPsychoPy instance. Then, we configure its

various parameters, e.g., foreground/background color, calibration target. Note that the

calibration target could be a "circle" (default), a "picture", a "movie" clip, or a dynamically

rotating "spiral". To configure the type of calibration target, simple set genv.setTargetType() to

"circle", "picture", "movie", or "spiral", e.g., genv.setTargetType('picture'). You may configure

the warning beeps as well. You can use the default warning beeps (shown in the example script

below) or use a custom .wav file as the warning beep.

Configure a graphics environment (genv) for tracker calibration

genv = EyeLinkCoreGraphicsPsychoPy(el_tracker, win)

print(genv) # print out the version number of the CoreGraphics library

Set background and foreground colors for the calibration target

in PsychoPy, (-1, -1, -1)=black, (1, 1, 1)=white, (0, 0, 0)=mid-gray

foreground_color = (-1, -1, -1)

background_color = win.color

genv.setCalibrationColors(foreground_color, background_color)

Set up the calibration target

The target could be a "circle" (default), a "picture", a "movie" clip,

or a rotating "spiral". To configure the type of calibration target, set

genv.setTargetType to "circle", "picture", "movie", or "spiral", e.g.,

genv.setTargetType('picture')

Use gen.setPictureTarget() to set a "picture" target

genv.setPictureTarget(os.path.join('images', 'fixTarget.bmp'))

Use genv.setMovieTarget() to set a "movie" target

genv.setMovieTarget(os.path.join('videos', 'calibVid.mov'))

Use a picture as the calibration target

genv.setTargetType('picture')

genv.setPictureTarget(os.path.join('images', 'fixTarget.bmp'))

Configure the size of the calibration target (in pixels)

this option applies only to "circle" and "spiral" targets

genv.setTargetSize(24)

Beeps to play during calibration, validation and drift correction

parameters: target, good, error

target -- sound to play when target moves

good -- sound to play on successful operation

error -- sound to play on failure or interruption

Each parameter could be ''--default sound, 'off'--no sound, or a wav file

genv.setCalibrationSounds('', '', '')

resolution fix for macOS retina display issues

if use_retina:

 genv.fixMacRetinaDisplay()

Request Pylink to use the PsychoPy window we opened above for calibration

pylink.openGraphicsEx(genv)

To request PyLink to use the CoreGraphics library for calibration, we need to also call the

pylink.openGraphicsEx() command.

Request Pylink to use the PsychoPy window we opened above for calibration

pylink.openGraphicsEx(genv)

5.7 Helper functions

The script then defines a few helpful functions to clear the screen, to terminate the task, to

register keypresses, show messages, to abort a trial, and to run a single trial. We will go through

the functions for terminating the task and running through a trial in a later section.

define a few helper functions for trial handling

def clear_screen(win):

""" clear up the PsychoPy window"""

def show_msg(win, text, wait_for_keypress=True, any_key_to_terminate=True):

""" Show task instructions on screen"""

def terminate_task():

""" Terminate the task gracefully and retrieve the EDF data file

file_to_retrieve: The EDF on the Host that we would like to download

 win: the current window used by the experimental script

 """

def abort_trial():

"""Ends recording """

def run_trial(trial_pars, trial_index):

""" Helper function specifying the events that will occur in a single trial

trial_pars - a list containing trial parameters, e.g.,

 ['cond_1', 'img_1.jpg']

trial_index - record the order of trial presentation in the task

 """

5.8 Calibrate the tracker

To calibrate the tracker, we need to call the doTrackerSetup() command. Calibration is usually

performed at the beginning of a testing session, at the beginning of a new block of trials, or

between trials if tracking accuracy is not ideal.

Step 5: Set up the camera and calibrate the tracker

Show the task instructions

task_msg = 'In the task, you may press the SPACEBAR to end a trial\n' + \

'\nPress Ctrl-C to if you need to quit the task early\n'

if dummy_mode:

 task_msg = task_msg + '\nNow, press ENTER to start the task'

else:

 task_msg = task_msg + '\nNow, press ENTER to calibrate tracker'

 show_msg(win, task_msg, wait_for_keypress=False)

skip this step if running the script in Dummy Mode

if not dummy_mode:

 try:

 el_tracker.doTrackerSetup()

 except RuntimeError as err:

 print('ERROR:', err)

 el_tracker.exitCalibration()

 Should_recal = 'no'

5.9 Run through all trials

The parameters of each trial are put into a list, at the beginning of the script. Following

calibration, we loop over the list that contains the parameters of all trials to run through all the

trials.

Store the parameters of all trials in a list, [condition, image]

trials = [

 ['cond_1', 'img_1.jpg'],

 ['cond_2', 'img_2.jpg'],

]

Step 6: Run the experimental trials, index all the trials

construct a list of 4 trials

test_list = trials[:]*2

randomize the trial list

random.shuffle(test_list)

trial_index = 1

for trial_pars in test_list:

 run_trial(trial_pars, trial_index)

 trial_index += 1

5.10 The run_trial() function

In the script, we defined a run_trial() function to group the commands we need to execute on

each trial. The very first command we executed here will return the link connection to the

tracker.

el_tracker = pylink.getEYELINK()

5.10.1 Backdrop on the Host

We send over commands to clear up the Host PC screen, and then draw the backdrop or

landmarks there. This is optional, but can be a helpful feature if you would like to monitor gaze

during testing. For drawing a backdrop on the Host PC screen, here we illustrate two different

commands, imageBackdrop() and bitmapBackdrop(). The latter one should work with all

versions of the EyeLink Host PC; the former command will work on more recent models

(EyeLink 1000 Plus, Portable Duo) and with versions of the EyeLink Developers Kit 2.0 and up.

Since the imageBackdrop() calls a few methods in the PIL module, you’ll need to have the PIL

module installed beforehand (by running pip install pillow).

A few additional primitive drawing commands (e.g., lines, boxes) supported by the Host PC are

documented in the COMMANDS.INI file on the Host PC. These commands provide a lightweight

solution for drawing reference landmarks on the Host PC screen. For instance, the correct

saccade target location in a pro- / anti-saccade task.

put the tracker in the offline mode first

el_tracker.setOfflineMode()

clear the host screen before we draw the backdrop

el_tracker.sendCommand('clear_screen 0')

show a backdrop image on the Host screen, imageBackdrop() the recommended

function, if you do not need to scale the image on the Host

parameters: image_file, crop_x, crop_y, crop_width, crop_height,

x, y on the Host, drawing options

el_tracker.imageBackdrop(os.path.join('images', pic),

0, 0, scn_width, scn_height, 0, 0,

pylink.BX_MAXCONTRAST)

If you need to scale the backdrop image on the Host, use the old PyLink

bitmapBackdrop(), which requires an additional step of converting the

image pixels into a recognizable format by the Host PC.

pixels = [line1, ...lineH], line = [pix1,...pixW], pix=(R,G,B)

the bitmapBackdrop() command takes time to return, not recommended

for tasks where the ITI matters, e.g., in an event-related fMRI task

parameters: width, height, pixel, crop_x, crop_y,

crop_width, crop_height, x, y on the Host, drawing options

Use the code commented below to convert the image and send the backdrop

im = Image.open('images' + os.sep + pic) # read image with PIL

im = im.resize((scn_width, scn_height))

img_pixels = im.load() # access the pixel data of the image

 pixels = [[img_pixels[i, j] for i in range(scn_width)]

for j in range(scn_height)]

el_tracker.bitmapBackdrop(scn_width, scn_height, pixels,

 0, 0, scn_width, scn_height,

 0, 0, pylink.BX_MAXCONTRAST)

OPTIONAL: draw landmarks and texts on the Host screen

In addition to backdrop image, You may draw simples on the Host PC to use

as landmarks. For illustration purpose, here we draw some texts and a box

For a list of supported draw commands, see the "COMMANDS.INI" file on the

Host PC (under /elcl/exe)

 left = int(scn_width/2.0) - 60

 top = int(scn_height/2.0) - 60

 right = int(scn_width/2.0) + 60

 bottom = int(scn_height/2.0) + 60

draw_cmd = 'draw_filled_box %d %d %d %d 1' % (left, top, right, bottom)

el_tracker.sendCommand(draw_cmd)

5.10.2 TRIALID message

The next step is to send a TRIALID message to mark the onset of a new trial. This message is

needed for the Data Viewer software to correctly segment the data file into “trials”.

send a "TRIALID" message to mark the start of a trial, see Data

Viewer User Manual, "Protocol for EyeLink Data to Viewer Integration"

el_tracker.sendMessage('TRIALID %d' % trial_index)

5.10.3 Record status message

It can be helpful to have some information about the current trial on the Host PC, so the

experimenter can easily monitor the progress of the task and ensure the participant is actively

engaging in the task. In the example script, the status message shows the current trial number,

in the bottom-right corner of the Host PC screen.

record_status_message : show some info on the Host PC

here we show how many trial has been tested

status_msg = 'TRIAL number %d' % trial_index

el_tracker.sendCommand("record_status_message '%s'" % status_msg)

5.10.4 Drift-check / drift-correction

One of the most critical commands illustrated in this example script is doDriftCorrect(). Following

this command, a target appears on the screen, and the participant needs to look at the target

and then (the experimenter or the participant) confirm the gaze position by pressing a key. The

tracker will estimate the current tracking accuracy with the reported gaze position and the

physical position of the target.

This feature is known as drift-correction or drift-check, and one can think of it as a 1-point

validation of tracking accuracy. The concept of drift correction is inherited from earlier head-

mounted versions of the EyeLink eye-tracker (EyeLink I and II). In these models, the headband

could slip and cause drifts in the gaze data, especially when operating the eye tracker in the

pupil-only tracking mode. This issue was tackled by a linear correction of the gaze data based

on the gaze error reported by the drift-correction procedure. For recent EyeLink eye trackers

(EyeLink 1000, 1000 Plus, and Portable Duo), by default, the gaze error is no longer used to

correct the gaze data, as the systems are resilient to small head or camera displacement when

performing recording in the pupil-CR mode. Instead, the drift-correction routine only performs a

“drift-check”; it checks the tracking accuracy and allows users to recalibrate if necessary.

drift check

we recommend drift-check at the beginning of each trial

the doDriftCorrect() function requires target position in integers

the last two arguments:

draw_target (1-default, 0-draw the target then call doDriftCorrect)

allow_setup (1-press ESCAPE to recalibrate, 0-not allowed)

Skip drift-check if running the script in Dummy Mode

while not dummy_mode:

 # terminate the task if no longer connected to the tracker or

 # user pressed Ctrl-C to terminate the task

 if (not el_tracker.isConnected()) or el_tracker.breakPressed():

 terminate_task()

 return pylink.ABORT_EXPT

 # drift-check and re-do camera setup if ESCAPE is pressed

 try:

 error = el_tracker.doDriftCorrect(int(scn_width/2.0),

 int(scn_height/2.0), 1, 1)

 # break following a success drift-check

 if error is not pylink.ESC_KEY:

 break

 except:

 pass

The doDriftCorrect() command takes four parameters. The first two are x, y pixel coordinates for

the drift-check target. Note that x, y must be integers, (e.g., 512, 384). The third parameter

specifies whether PyLink should draw the target. If set to 0, we need to first draw a custom

target at the x, y pixel coordinates, then call the doDriftCorrect() command. The fourth

parameter controls whether PyLink should evoke the calibration routine if the ESCAPE key is

pressed.

5.10.5 Data recording

The most common recording implementation is to start recording at the beginning of each trial

and stop recording at the end of each trial. By doing so, the tracker does not record data during

the inter-trial intervals, reducing the size of the EDF data file, and allowing performing a drift

check and/or update the Host PC backdrop graphics. For situations where a single continuous

recording is preferred (e.g., in an fMRI or EEG study), one can start data recording at the

beginning of a session (or run) and stop data recording at the end of a session, and use

messages (e.g, TRIALID and TRIAL_RESULT) to mark the beginning and endpoints of trials

within the continuous recording.

To start data recording, call startRecording(). This command takes four parameters specifying

what types of data (event or sample) are recorded in the EDF data file and what types of data

are available over the link during testing. With the parameter (1, 1, 1, 1), the tracker will record

both events and samples in the data file and also make these two types of data available over

the link.

put tracker in idle/offline mode before recording

el_tracker.setOfflineMode()

Start recording

arguments: sample_to_file, events_to_file, sample_over_link,

event_over_link (1-yes, 0-no)

try:

 el_tracker.startRecording(1, 1, 1, 1)

except RuntimeError as error:

 print("ERROR:", error)

 abort_trial()

 return pylink.TRIAL_ERROR

5.10.6 Logging messages

Messages are sent to the tracker whenever a critical event occurs; for instance, a picture

appears on the screen. With these messages in the EDF data file, we can tell what events

occurred during testing, and segment the recording for meaningful analysis (e.g., by setting

Interest Periods in the Data Viewer software). The example script sends the image_onset

message to the tracker immediately after a picture appears on the screen.

el_tracker.sendMessage('image_onset')

In addition to messages that mark critical trial events, we also log messages that will facilitate

data visualization and analysis in the Data Viewer software. The expected formatting and the

options available for the functions performed by these special messages are described in the

Protocol for EyeLink Data to Viewer Integration (https://www.sr-research.com/support/thread-

83.html). The first such message illustrated in the script is IMGLOAD. This message points to

the picture presented during testing; when Data Viewer sees this message, it will find the picture

and draw as the background in the Trial View window’s Spatial Overlay and Animation Views.

Send a message to clear the Data Viewer screen, get it ready for

drawing the pictures during visualization

bgcolor_RGB = (116, 116, 116)

el_tracker.sendMessage('!V CLEAR %d %d %d' % bgcolor_RGB)

send over a message to specify where the image is stored relative

to the EDF data file, see Data Viewer User Manual, "Protocol for

EyeLink Data to Viewer Integration"

bg_image = '../../images/' + pic

imgload_msg = '!V IMGLOAD CENTER %s %d %d %d %d' % (bg_image,

 int(scn_width/2.0),

 int(scn_height/2.0),

 int(scn_width),

 int(scn_height))

el_tracker.sendMessage(imgload_msg)

The second message illustrated here is an Interest Area defining message, which will be used

to create Interest Areas in Data Viewer.

send interest area messages to record in the EDF data file

here we draw a rectangular IA, for illustration purposes

format: !V IAREA RECTANGLE <id><left><top><right><bottom> [label]

https://www.sr-research.com/support/thread-83.html
https://www.sr-research.com/support/thread-83.html

for all supported interest area commands, see the Data Viewer Manual,

"Protocol for EyeLink Data to Viewer Integration"

ia_pars = (1, left, top, right, bottom, 'screen_center')

el_tracker.sendMessage('!V IAREA RECTANGLE %d %d %d %d %d %s' % ia_pars)

A third set of messages are illustrated here to show how to record variables and values into the

EDF data file, so Data Viewer can recognize the variables automatically when loading the EDF

data file.

record trial variables to the EDF data file, for details, see Data

Viewer User Manual, "Protocol for EyeLink Data to Viewer Integration"

el_tracker.sendMessage('!V TRIAL_VAR condition %s' % cond)

el_tracker.sendMessage('!V TRIAL_VAR image %s' % pic)

el_tracker.sendMessage('!V TRIAL_VAR RT %d' % RT)

5.10.7 The TRIAL_RESULT message

At the end of a trial, we include the following line of code to send a TRIAL_RESULT message.

Here, we add a flag “0” to the TRIAL_RESULT message to indicate the trial completed

successfully. This message marks the end of a trial. Before we send over this message, it is

recommended to send the !V CLEAR message. This message will clear any drawing in Data

Viewer by the end of a trial. The TRIAL_RESULT message should be sent, following the

stopRecording() command, so the recording is enclosed in a pair of TRIALID and

TRIAL_RESULT messages, which Data Viewer uses to segment the trials.

send a message to clear the Data Viewer screen as well

el_tracker.sendMessage('!V CLEAR 128 128 128')

stop recording; add 100 msec to catch final events before stopping

pylink.pumpDelay(100)

el_tracker.stopRecording()

send a 'TRIAL_RESULT' message to mark the end of trial, see Data

Viewer User Manual, "Protocol for EyeLink Data to Viewer Integration"

el_tracker.sendMessage('TRIAL_RESULT %d' % pylink.TRIAL_OK)

5.10.8 The terminate_task() function

In the script, we defined a terminate_task() function to perform the housekeeping job at the end

of a testing session, or in case that the experimenter terminated the task prematurely. Three

jobs are done in this function, namely put the tracker in Offline mode, close the data file, and

download the file to the stimulus presentation PC and terminate the link to the tracker. It is

recommended to put the tracker in Offline mode and add a delay before closing the data file.

This helps to protect data integrity.

if el_tracker.isConnected():

 # Terminate the current trial first if the task terminated prematurely

 error = el_tracker.isRecording()

 if error == pylink.TRIAL_OK:

 abort_trial()

 # Put tracker in Offline mode

 el_tracker.setOfflineMode()

 # Clear the Host PC screen and wait for 500 ms

 el_tracker.sendCommand('clear_screen 0')

 pylink.msecDelay(500)

 # Close the edf data file on the Host

 el_tracker.closeDataFile()

 # Show a file transfer message on the screen

 msg = 'EDF data is transferring from EyeLink Host PC...'

 show_msg(win, msg, wait_for_keypress=False)

 # Download the EDF data file from the Host PC to a local data folder

 # parameters: source_file_on_the_host, destination_file_on_local_drive

 local_edf = os.path.join(session_folder, session_identifier + '.EDF')

 try:

 el_tracker.receiveDataFile(edf_file, local_edf)

 except RuntimeError as error:

 print('ERROR:', error)

 # Close the link to the tracker.

 el_tracker.close()

6 Known issues and trouble-shooting tips

6.1 PsychoPy issues

6.1.1 Retina displays

The high-res retina displays on macOS may give people issues when using PsychoPy. One

easy solution is to use the “scaled down” resolution instead of the native pixel resolution of the

retina display. If you go to the Retina Display settings, tick the “Scaled” option, and hover the

mouse on the option of your choice (e.g., Default). You will see the scaled-down resolution on

the left side (e.g., 1280 x 800 in the screenshot below). This is the resolution PsychoPy will use

to draw your stimuli. However, if you read the “size” of the full screen window you opened

PsychoPy will report the actual pixel resolution (e.g., 2560 x 1600). Users should be aware of

this discrepancy.

If you are using an external monitor connected to a MacBook (equipped with retina display),

macOS will allow you to either optimize screen resolution for the built-in retina display or the

external monitor.

In the PsychoPy Coder example scripts, we added a use_retina variable to help avoid the

various issues related to retina screen resolution. If you choose to optimize the screen

resolution for the external monitor, please be sure to set the use_retina variable in the example

script to False. If you choose to optimize the screen resolution for the built-in retina display, or

the MacBook is not connected to an external monitor, set the use_retina variable to True.

Set this variable to True if you use the builtin retina screen as your

primary display device on macOS. If you have an external monitor, set this

variable True if you choose to "Optimize for Built-in Retina Display"

in the Displays preference settings.

use_retina = False

In the PsychoPy example scripts, we also the following command to request the

EyeLinkCoreGraphicsPsychoPy.py library to use the scaled down resolution if use_retina is set

to True.

resolution fix for macOS retina display issues

if use_retina:

 genv.fixMacRetinaDisplay()

The Psychopy Builder examples handle the "use_retina” setting automatically through the

following dialog box at the beginning of the experiment run time.

6.1.2 PsychoPy window loses focus

We have seen an issue on both Windows and macOS where, in the video example, the screen

would lose focus and stop accepting keyboard input when loading the video files. The mouse

cursor would show up as well in this case. You need to click the mouse once to get the

PsychoPy window in focus. This is a known PsychoPy issue yet to be fixed at time of this

documentation (https://discourse.psychopy.org/t/loading-a-movie-somehow-brings-up-the-

mouse-cursor-in-fullscreen-mode/19826).

https://discourse.psychopy.org/t/loading-a-movie-somehow-brings-up-the-mouse-cursor-in-fullscreen-mode/19826
https://discourse.psychopy.org/t/loading-a-movie-somehow-brings-up-the-mouse-cursor-in-fullscreen-mode/19826

6.1.3 PsychoPy keyboard locks up on macOS

On macOS, we have seen random keyboard lockup when running the example scripts. The

script appears to freeze and will not accept keyboard inputs. We suspect this issue arises from

some conflicts between the macOS Privacy settings (e.g., “Input Monitoring”) and PsychoPy.

We do not have a solution or workaround for this issue yet, but the issue would usually

disappear if you re-run the script.

6.2 pygame issues

6.2.1 pygame not accepting any keyboard inputs

We have seen that sometimes the pygame window would lose focus and will not accept any

keyboard input. An easy fix to this issue is to click the mouse once. This issue is only seen on

Windows with pygame 2.x We have not seen this issue on macOS (with pygame 2.x) or in older

versions of pygame (1.9.6).

6.2.2 The “pygame parachute” error

On macOS, you may see the following error messages, especially when using pygame 1.9.6.

When this happens, pygame would crash and the scripts would not run. There is unfortunately

no proper fix to this issue. You may try a different version of pygame (e.g., a beta build), but it is

difficult to tell which version works on which macOS. We have also seen this issue in our tests

of pygame 2.x, but it is not as common.

Fatal Python error: (pygame parachute) Segmentation Fault Aborted

