
The EyeLink Plugin for OpenSesame

User Manual

Version 0.6

Last updated on May 31, 2021

Licensing Info

The EyeLink plugin for OpenSesame was developed to help users to control and to
communicate with the EyeLink trackers. The current release does not contain any
eye-event triggers (e.g. wait for a fixation of 200 ms in a pre-defined Interest Area to
initiate the presentation of stimulus), but it has most of the frequently used functions and
configuration options of the tracker. We encourage users to download the version
released on the SR Support website, which implements the tracking practice and
options recommended by SR Research, but the user is allowed to modify the source
code to meet their experimental needs. Please see the licensing info below.

Eyelink Plugin for OpenSesame
Copyright (C) 2021 SR Research

This program is free software; you can redistribute it and / or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

1 Installation
This plugin has been tested on Windows 10, macOS 11.3.1 and Ubuntu 20.041, but
should work for any operating systems supported by OpenSesame.

1) Download and install the latest version of the EyeLink Developers Kit from the SR
Support website, under Downloads: EyeLink Developers Kit / API
(https://www.sr-support.com/thread-13.html). It includes the EyeLink API, the
OpenSesame plugin, and example OpenSesame experiments illustrating how to use
the plugin to interface with EyeLink systems.

2) After installation of the EyeLink Developers Kit, locate the OpenSesame folder
containing the EyeLink plugin and examples:

Windows: C:\Program Files (x86)\SR Research\EyeLink\SampleExperiments\Python\examples\OpenSesame

macOS: /Applications/Eyelink/SampleExperiments/Python/examples/OpenSesame

Ubuntu: /usr/share/EyeLink/SampleExperiments/Python/examples/OpenSesame

3) Copy all the folders in the openSesame_plugin folder (i.e. el_CamSetup,
el_Connect, …, el_StopRecording folders) to:

Windows: C:\Program Files (x86)\OpenSesame\share\opensesame_plugins\

macOS: /Applications/OpenSesame.app/Contents/Resources/share/opensesame_plugins/

Ubuntu: /usr/share/opensesame_plugins/

Note, on Ubuntu to ensure you have permissions to paste these folders, you can use
the terminal to copy the files using the following command:

sudo cp -r /usr/share/EyeLink/SampleExperiments/Python/examples/OpenSesame/openSesame _plugin/el*
/usr/share/opensesame_plugins/

4) OpenSesame needs the PyLink library to communicate with the tracker. PyLink is a
Python wrapper of the EyeLink API (part of the EyeLink Developers Kit). To install
the PyLink library, please do the following:

1For Ubuntu 20.04 don’t exit the experiment through the ESCAPE key as this will not properly close the
connection with the Host PC. This will cause a connection error and require a reboot of both Host and
Display PC.

https://www.sr-support.com/thread-13.html

Windows:

Different versions of the PyLink library, for different versions of Python can be found
in the following folder after the EyeLink Developers Kit for Windows has been
installed:

C:\Program Files (x86)\SR Research\EyeLink\SampleExperiments\Python\64

There are multiple subfolders in this folder with two-digit names (e.g., 2.7, 3.6, 3.7).
The two digits in the folder name indicate the Python version it was built against
(e.g., the subfolder 3.7 contains the PyLink library for Python 3.7). When you launch
OpenSesame, you can see the version of Python that it is using in the Console.
Please copy the “pylink” folder from the corresponding version folder and paste it to
the following folder:

C:\Program Files (x86)\OpenSesame\Lib\site-packages

macOS:

Different versions of the PyLink library, for different versions of Python can be found
in the following folder after the EyeLink Developers Kit for macOS has been
installed:

/Applications/EyeLink/SampleExperiments/Python

There are multiple subfolders in this folder with two-digit names (e.g., 2.7, 3.6, 3.7).
The two digits in the folder name indicate the Python version it was built against
(e.g., the subfolder 3.7 contains the PyLink library for Python 3.7). When you launch
OpenSesame, you can see the version of Python that it is using in the Console.
Please copy the “pylink” folder from the corresponding version folder and paste it to
the following folder:

/Applications/OpenSesame/Contents/Resources/lib/[python version]/site-packages

(where [python version] will reflect the Python version that OpenSesame is using, e.g., python3.7)

Ubuntu:

Open up a terminal and enter the following:

python3 /usr/share/EyeLink/SampleExperiments/Python/install_pylink.py

5) After the above steps, please be sure to set the IP address of the experimental PC
to “100.1.1.2” (without quotes) and Subnet mask to “255.255.255.0” (without quotes)
so the Display PC is on the same network as the EyeLink Host PC
(https://www.sr-support.com/thread-281.html). Open the example experiment that
comes with the EyeLink plugin to test the link between the two machines.

OpenSesame supports Pygame (legacy), Psychopy, and Expyriment as its backend.
We encourage users to use the Psychopy backend, as it is robust and supports
frequently used visual stimuli for visual psychophysics (e.g., gratings).

2 Usage of the Plugin

After the Plugin has been installed, one should see eight items come up in the item
toolbar of the OpenSesame interface.

To use the plugin, simply drag one of these items to the required location in the
experiment sequence. For general cognitive tasks, we recommend that users follow
these integration steps:

1) Experiment level
a) Connect to the tracker when the script initializes. Please use the el_Connect item

for this task. The configuration options available for this item will be elaborated in
the next section.

b) This will help the user to maintain optimal tracking accuracy. For fMRI or tasks in
which interruption of the task should be avoided, users can calibrate the tracker
once at the beginning of each run / session. The item for this function is
el_CamSetup. This item will help users to transfer the camera image to the
experimental PC, to adjust the pupil / CR threshold by using hot keys on the

https://www.sr-support.com/thread-281.html

experimental PC keyboard, to calibrate the tracker and validate the calibration
results.

c) Run the experimental trials one-by-one and record eye movement data.
d) Disconnect from the Eyelink Host PC and transfer the data file to the

experimental PC.

2) Trial level
a) Show backdrop on the Host PC. Some people would like to see the real time

gaze over a background image or landmarks on the Host PC during recording.
This is optional, but can be implemented at the beginning of each trial, so it won’t
affect trial event timing. We recommend using an inline script here for flexibility.

b) Drift-correction or drift-check. This procedure will check the tracking accuracy
and give the user a chance to re-calibrate the tracker, if needed.

c) Start recording. We start and stop recording at the beginning and end of each
trial, so the inter-trial intervals won’t be recorded; this will reduce the size of the
EDF data file. For EEG and tasks where continuous recording is preferred,
please start recording at the beginning of each run / session. When start
recording, the user also has the option to send a “recording status” message to
the tracker; this message will be shown in the bottom-right corner of the Host PC
screen.

d) Draw experimental graphics and send messages to the tracker to mark the onset
of these stimuli, and maybe also the interest areas that will be used in data
analysis. This is IMPORTANT, otherwise, there is no way to tell when and what
stimuli was presented from the eye movement data file.

e) Collect subject responses and send messages to the tracker.
f) Stop recording and send all experimental variables to the tracker. These

variables will be accessible from the Data Viewer software, a powerful data
analysis and visualization tool developed by SR Research. The el_stopRecording
node will automatically send all variables to the tracker; for user-defined
variables, an inline script is needed.

We have provided example scripts with all the recommended usage of the tracker. The
functions of each of the items in the plugin are briefly explained below.

2.1 el_Connect
Establish a link to the EyeLink Host PC, configure the tracker, and automatically open a
data file on the Host to record the eye movement data.

The options that can be set with this item are explained in the table below.

Tracker Address The IP address of the Eyelink Host PC. The default IP address
of the Host PC is 100.1.1.1; the IP address of the experimental
PC should be in the same network of the Host PC, i.e., in the
range of 100.1.1.2-255.

Tracker Version The model of EyeLink tracker being used for data collection:
Eyelink I, EyeLink II, EyeLink 1000, EyeLink 1000 Plus, or
EyeLink Portable Duo. Some configuration options may not be
available for certain models, e.g., sampling rate cannot be set
from the EyeLink Plugin for EyeLink I and II, and the Pupil-only
tracking method is not available in EyeLink 1000, 1000 Plus
and Portable Duo.

Camera Mount The mounting solution of the EyeLink camera, i.e., Desktop,
Tower, Arm, Long-range.

Mount Usage Tracking in either Head Stabilized or Remote (head free to
move) mode. The remote mode is unavailable for Tower and
Long-range mounts. Tracking in remote mode requires the use
of a target sticker on the subject’s forehead.

Dummy Mode Run the tracker in “simulation” mode, i.e., no physical
connection to the tracker is established. In Dummy Mode, the
user should press F1 to skip Camera setup/calibration, and the
drift-correction/check target will briefly flash and then disappear
(as no tracker is physically connected to the experimental PC).

Link Filter Level The EyeLink trackers utilizes a heuristic filtering algorithm for
denoise purposes (see Stampe2, 1993). Each increase in filter
level reduces noise by a factor of 2 to 3 but introduces a
1-sample delay to the data available over the link. The default
option is set to STANDARD, but users can turn off Link Filter if
real time online access of gaze data is critical.

File Filter Level Same as above, but applies to the data recorded in file.

Eye Event Data Set how velocity information for saccade detection is to be
computed. This option is almost always set to GAZE. Please
see the EyeLink user manual (section 4) for details of various
eye events (e.g., fixation, saccade).

Saccade Sensitivity Sensitivity of the Eyelink online parse, see Section 4.3.9 of the
user manual. For Eyelink II and newer models,
HIGH-velocity=22 deg/sec, acceleration=3200 deg/sec2;
NORMAL-velocity=30 deg/sec, acceleration=8000 deg/sec2.

Eye Tracking Mode Select the tracking algorithm. EyeLink I operates in Pupil-only
mode, while EyeLink II operates in either Pupil-only or Pupil-CR
mode. EyeLink 1000 and newer models all operate in Pupil-CR
mode. The Pupil-CR tracking algorithm is resilient to small
head movements (i.e., drift-free to certain extent). This is why
force drift-correcting the tracker is not recommended for
EyeLInk 1000 and newer models.

Pupil Detection Set the algorithm used to detect the pupil center. This option
only applies to EyeLink 1000 and newer models.

Sampling rate The sampling rate of the tracker.

Eye(s) to Track Set the eyes to track; can be changed on the Host PC
manually.

2 Stampe, D.M. (1993) Heuristic filtering and reliable calibration methods for video-based
pupil-tracking systems. Behavior Research Methods, Instruments, & Computers, 25(2), 137-142.

Pupil Size Record the pupil size in arbitrary units, AREA and DIAMETER
measures are equivalent: DIAMETER = 256*SQRT(AREA/PI).
The pupil size recorded in the data files is in arbitrary units;
calibration during testing is required if one needs to report pupil
size in real world units (i.e., mm). Please see this SR Support
forum post (https://www.sr-support.com/thread-154.html).

EDF Folder The EyeLink data file will be saved on the Host PC and
retrieved to the current 'EDF Folder' at the end of a session. By
default, the subject number the user specified at the beginning
of a session will be used to name the EDF data file. Please
bear in mind that the length of the EDF data file name and
hence the subject number you specified CANNOT exceed 8
characters.

2.2 el_Disconnect
This item will disconnect from the EyeLink Host PC and retrieve the EDF data file over
the link. No option to configure for this item.

2.3 el_CamSetup
This item wraps all the functions a user may need to calibrate the tracker. Using
animation calibration target (video) has not yet been implemented. One should put this
item at the beginning of each block of trials. The configuration options are explained in
the table below.

https://www.sr-support.com/thread-154.html)

Calibration Type Select the calibration type, i.e, HV9 for a 9-point calibration.
When tracking in remote mode, it is recommended to use HV13,
whereas in head-stabilized mode, HV9 gives the best calibration.

Pacing Interval Set the pacing interval for the calibration / validation targets, i.e.,
after how much time will the next calibration target be presented
after the current calibration target has been accepted.

Randomize Order Randomize the order of the calibration / validation targets

Repeat First Point Repeat the first point. This option is enabled by default, and
helps to improve calibration results.

Force Manual
Accept

Manually accept fixation duration calibration / validation by
pressing SPACEBAR or ENTER. One can switch to automatic
mode at any time during calibration / validation by pressing “A”
on the Host or experimental PC keyboard.

Horizontal Screen
Proportion to
Calibrate

The horizontal proportion of the screen to calibrate. This option is
useful when the subject display is large and the top corners may
be outside the tracking range of the tracker. One can manually
specify the calibration / validation target positions, but this is the
recommended way of controlling the size of the calibrated screen
region.

Vertical Screen
Proportion to
Calibrate

The horizontal proportion of the screen to calibrate.

Calibration Target Select which type of calibration target to use. The default is a
bull’s eye shaped dot, but one can also use an image or a video
as the calibration target.

Custom Target
Image/Video

Select an image or a video file from the File Pool to use as the
calibration target.

2.4 el_DriftCheck
This item helps to drift-correct the tracker. The EyeLink II and EyeLink I trackers mount
the eye camera on the headband and are susceptible to gaze-drifts as the headband
may slip during recording. Drift-correction helps to maintain the tracking accuracy. For
EyeLink 1000 and newer models, the tracker uses the Pupil-CR tracking method by
default. This method is relatively drift-free and there is no need to drift-correct the
tracker; by default the drift-correction routine only checks the gaze error without linearly
correcting the gaze data. The various configuration options of this item are listed in the

table below.

Target X / Y The X, Y coordinates of the drift-correction / check target
in OpenSesame’s default screen coordinates (i.e., 0,0
correspond to the center of the screen). The
drift-correction / check target does not necessarily need
to be presented at the center of the screen.

Allow Re-calibrate if
Drift-correction / check
Fails

Allow the user to press ESCAPE key to setup the tracker
and to re-calibrate.

Apply Drift-correction Force the tracker to drift-correct only when using EyeLInk
I / II.

Use Custom Target Use an image from the File Pool as the drift-correction /
check target.

Custom Target Image Select an image file to use as the drift-correction target.

Use Animation Target Use a video as the drift-correction target.

Animation Target Video Select a video to use as the drift-correction target.

2.5 el_StartRecording
Start the track in recording mode. One may also send a status message to the tracker
to show the current condition/trial, or the progress of the task on the Host PC screen.
One can also specify what types of data is available over the link during recording, and

what types of data are saved in EDF data files.

File with Eye
Events

Store event data in the EDF data file.

File with Samples Store event data in the EDF data file.

Eye Events
Available Over Link

Allows accessing event data over the link during recording.

Samples Available
Over Link

Allows accessing sample data over the link during recording.

Recording Status
Message

Send a message to the Host PC screen to show the current trial
number, condition, etc.

2.6 el_StopRecording
This item is usually placed at the end of a trial to stop the recording of eye movement
data, and to do some housekeeping work. This node helps also to log the variables
generated by OpenSesame into the EDF data files. One may choose to log only
essential variables instead of all OpenSesame variables. A friendly note here is that
user-defined variables are not logged by OpenSesame by default, so an inline script is
recommended for logging these variables in the EDF data file. Please see the example
OpenSesame projects for details.

Log only essential
variables in the
EDF data file

An OpenSesame testing session would generate a large
number of variables, some are essential to data analysis
whereas others are not. Tick this option to record only the
important variables in the EDF data file.

2.7 el_SendCommand
Send commands to the tracker. If you need to send multiple commands, put each
command in a line, for instance,

sampling_rate 500

draw_cross 512 384

The various 'draw' commands can be very useful and one can use them to draw simple
landmarks on the Host display during recording. These commands (e.g., clear_screen,
draw_line, draw_box, draw_text) can be found in the COMMANDS.INI file on the Host
PC, under /elcl/exe. One can also send various commands to configure the tracker
options, for instance, setting the sampling rate to 500 Hz (see the example above).

This node is not as flexible as inline scripts; please see the OpenSesame projects
accompanying the plugin for example code.

2.8 el_SendMessage
Messages are very IMPORTANT and we need messages in the DATA FILE to tell what
events happened during a trial and at what time. Messages should be sent to the
tracker everytime a stimulus screen is on or a response has been issued. A message
should not exceed 113 characters. One can send multiple messages, please put one
message in a line.

One can also send “Data Viewer Integration Messages” to the tracker. These messages
will be used by the Data Viewer software, a data analysis and visualization tool provided
by SR Research to load the interest areas, background images, etc. Please see the
Data Viewer user manual for a full list of Data Viewer integration messages (see the
“Protocol for EyeLink Data to Viewer Integration” section).

This node is not as flexible as inline scripts; please see the OpenSesame projects
accompanying the plugin for example code.

3 A few useful tips

3.1 Referring to the tracker from inline scripts
The tracker instance initialized by the plugin can be accessed from inline scripts by
referencing “self.experiment.eyelink”. For instance, putting the following commands in
an inline script will clear the screen of the Host PC and draw a cross at the center.

exp.eyelink.sendCommand('clear_screen 1')

exp.eyelink.sendCommand('draw_cross 512 384 15')

For all the attributes and methods of the tracker instance, please refer to the PyLink API
User Guide for details. The PyLink API User Guide is packaged within the EyeLink
Developers Kit and can be accessed from:

Windows: Start Menu -> All Programs -> SR Research-> Manuals
macOS: /Applications/Eyelink/SampleExperiments/Python/
Linux: /usr/share/EyeLink/SampleExperiments/Python/

The ability to access the tracker from inline scripts allows users to access all functions
wrapped in the PyLink library. Be sure to put your custom code in the “Run” rather than
the “Prepare” tab.

3.2 Send a backdrop image to the Host
One needs to use an inline script to send an image to the host to use as the recording
backdrop. In the “picture” example, we have the following lines of code at the beginning
of each trial. We read in the image we would like to send to the tracker with PIL (Python
Image Library), then convert the image pixels into a format that is recognizable by the
EyeLink Host. We then call the bitmapBackdrop() command to send over the image.

import PIL.Image as PIL_Image

import pylink

#backdrop image on the Host PC

img = pool[var.image]

img = PIL_Image.open(img)

w,h = img.size

pixels = img.load()

use the list comprehension trick to convert all image pixels into a <pixel>

format

supported by the Host PC, pixels = [line1, ...lineH], line = [pix1,...pixW],

pix=(R,G,B)

pixels_2transfer = [[pixels[i, j] for i in range(w)] for j in range(h)]

exp.eyelink.sendCommand('clear_screen 0') # clear the host screen

call the bitmapBackdrop() command to show backdrop image on the Host

arguments: width, height, pixel, crop_x, crop_y, crop_width, crop_height, x, y on

Host, option

pos_x = int(var.width/2.0 - w/2.0)

pos_y = int(var.height/2 - h/2.0)

exp.eyelink.bitmapBackdrop(w, h, pixels_2transfer, 0, 0, w, h, pylink.SV_NOREPLACE,

pos_x, pos_y, pylink.BX_MAXCONTRAST)

The bitmapBackdrop() command works for all EyeLink trackers. If you have the EyeLink
Developers Kit version 2.0 and a compatible PyLink library installed alongside
OpenSesame, you may also use the imageBackdrop() command instead. The
advantage of this new command is that it no longer requires converting images to the
pixel format noted above; the downside of this new command is that you cannot scale
the images on the Host PC screen. For compatibility consideration, we have
commented out this command in the “picture” example.

show a backdrop image on the Host screen, imageBackdrop() the recommended

function, if you do not need to scale the image on the Host

parameters: image_file, crop_x, crop_y, crop_width, crop_height,

x, y on the Host, drawing options

#

img_path = pool[var.image]

el_tracker.imageBackdrop(img_path, 0, 0, scn_width, scn_height,

pylink.BX_MAXCONTRAST)

3.3 Drawing simple landmarks on the Host PC
Instead of sending pictures over to the Host, it is usually sufficient to have landmarks
drawn on the Host PC. The “Visual World Task” illustrates how to do so with an inline
script. The commands we need to send to the tracker are simple, but you may need to
do some math to figure out “where” to draw the landmarks. In the example “Visual World

Task”, we draw four boxes on the Host to mark the position of all images shown to the
participants, then we put labels in the boxes, so the experimenter knows which image is
the target.

3.4 Interest Area definitions
It is IMPORTANT to keep in mind that the Interest Area definitions recognizable by the
Data Viewer software requires users to specify the Interest Area in a screen coordinate
where 0,0 is the top-left corner of the screen. In OpenSesame, the origin of the default
screen coordinates is the center of the screen instead. So, one needs to do a bit of
math when creating interest area messages. This feature is illustrated in the “Visual
World Task” example. We have four images, so we use a for-loop to figure out the
position of each image, then we send the interest area definition messages to the
tracker.

4 The picture example
This is a simple passive viewing task. We show an image on the screen; the subject
presses a key to see the next image. The structure of the task is fairly simple, we
connect to the tracker, calibrate the tracker, do the trials, then disconnect from the
tracker. In each trial, we send the backdrop image to the Host, then perform drift-check,
start recording, show the image, wait for a keyboard response, then record the variables
and stop recording.

4.1 Inline script for backdrop image
The only bit worth noting is the inline script we used to send the backdrop image to the
tracker. The script is presented in Section 3.2. The code is highly reusable; users only
need to change the line that specifies the image file they would like to use as backdrop.
In the picture example, the image file names are stored in a data column named
“image”, the following line will grab the image from the “pool” and use it as the
backdrop.

import PIL.Image as PIL_Image

import pylink

#backdrop image on the Host PC

img = pool[var.image]

img = PIL_Image.open(img)

w,h = img.size

pixels = img.load()

use the list comprehension trick to convert all image pixels into a <pixel>

format

supported by the Host PC, pixels = [line1, ...lineH], line = [pix1,...pixW],

pix=(R,G,B)

pixels_2transfer = [[pixels[i, j] for i in range(w)] for j in range(h)]

exp.eyelink.sendCommand('clear_screen 0') # clear the host screen

call the bitmapBackdrop() command to show backdrop image on the Host

arguments: width, height, pixel, crop_x, crop_y, crop_width, crop_height, x, y on

Host, option

pos_x = int(var.width/2.0 - w/2.0)

pos_y = int(var.height/2 - h/2.0)

exp.eyelink.bitmapBackdrop(w, h, pixels_2transfer, 0, 0, w, h, pylink.SV_NOREPLACE,

pos_x, pos_y, pylink.BX_MAXCONTRAST)

4.2 Showing background image in Data Viewer
Data Viewer is a powerful data analysis and visualization tool. Sometimes it is helpful to
have the background image when examining the gaze data and to create visualizations,
e.g., a heatmap.

To record the background image of each trial, you need to send an “IMGLOAD”
message to the tracker. The format of the IMGLOAD message can be found in the Data
Viewer user manual. Here in the example we provided a “CENTER” command so the
message will require Data Viewer to draw the image in reference to the image center
during visualization.

We need a time offset to proper use a message to mark the onset of the

stimulus_display screen

time_offset = int(self.time() - var.time_stimulus_display)

exp.eyelink.sendMessage('%d stimulus_display' % time_offset)

Send another message to let Data Viewer know where to load the background image

during

visualization; this require a special "!V IMGLOAD CENTER" message

img_path = '../images/' + var.image

img_x = var.width/2

img_y = var.height/2

imgload_msg = '%d !V IMGLOAD CENTER %s %d %d'%(time_offset, img_path, img_x, img_y)

exp.eyelink.sendMessage(imgload_msg)

There are two additional things worth mentioning here.

● It is possible to add a time offset to a message so the timestamp of the messages
mark the actual trial events. For instance, if you have a picture that will be presented
for 1-sec, sending the message before the image sketchpad may give you a screen
refresh error. Instead, you can send the message following the image presentation,
by including a time offset (like shown below) in the message.

● ghfx The EDF data files won’t contain any background image for you. Instead, the
EDF files store a “path” to the images, so Data Viewer can find the images when
loading the EDF data files. Note that the “path” to the image file is relative to where
you store your EDF data file. In the “picture” example, the EDF data files are stored
in the “edf_file” folder, so we need “..” to go up one level to get to the “images” folder.

5 Visual World example
This example script shows how to program a Visual World type task in OpenSesame.
One may believe that a tool with a nice graphical user interface will require minimum
scripting, this is almost always NOT the case. OpenSesame requires quite a bit of
“inline” scripting for tasks of medium to high complexity. The scripting part is discussed
in more detail in a later section.

5.1 Overview of the task
The task is straightforward. A drift-correction/check target (cross) first appears on the
screen, then 4 objects appear. After a preview period of 1000 msec, an audio file starts
to playback. The subject’s task is to quickly move the mouse cursor to click the target
object (grapes in the present task) when they hear the target word (“grapes”). By
performing a time-binning analysis over the sample gaze data, one can plot a nice
figure to show the “decision-making” process after the target word has been played. For
an overview of the Visual World paradigm, please see the review paper by Huettig,
Rommers, & Meyer (2011).

Huettig F, Rommers, J, & Meyer, A. S. (2011). Using the visual world paradigm to study language
processing: A review and critical evaluation. psychologica 137(2):151-171. DOI:
10.1016/j.actpsy.2010.11.003

This task obviously requires precise timing for audio playback. Please bear in mind that
SR Research has not done any sort of timing verification for OpenSesame and we
encourage users to perform their own tests if stimulus timing is critical for their tasks.

The overall organization of the script is not complicated, for introductory tutorials on
programming in OpenSesame, please check the Tutorial section on the OpenSesame
website, http://osdoc.cogsci.nl.

http://osdoc.cogsci.nl

5.2 Interest Areas and Host PC landmarks
The present task uses a few inline scripts and the most complicated one is the
“sti_preparation” inline. This script is responsible for quite some tasks we would
recommend if one plans to use (or may use) the EyeLink Data Viewer software to
analyze and visualize the eye movement data later on.

Here we first create a list of four screen locations with the xy_circle() function. Then, we
change the position of the objects based on the location specified in the “block” loop.
The “location” of each object is specified in the block loop as integers, i.e., 1, 2, 3, 4. We
use this variable as an index to set the position of each object by using the list of screen
coordinates (sti_pos) we created with xy_circle().

the positions of the objects

pos = xy_circle(n=4, rho = 250)

get the canvas on which the objects are shown

sti = items['stimulus_display'].canvas

clear the Host screen

exp.eyelink.sendCommand('clear_screen 0')

Clear the screen in Data Viewer

exp.eyelink.sendMessage('!V CLEAR_SCREEN 128 128 128')

width and height of the images we use

img_w, img_h =[240, 240]

position the images (tar, dis_1, dis_2, dis_3)

pos_index = [var.target_loc-1, var.distractor_1_loc-1, var.distractor_2_loc-1,

var.distractor_3_loc-1]

image labels on the sketchpad

img_labels = ['tar', 'dis_1', 'dis_2', 'dis_3']

name of the files

img_files = [var.target_img, var.distractor_1_img, var.distractor_2_img,

var.distractor_3_img]

for i in range(4):

s = img_labels[i]

set image position on the canvas

sti[s].x, sti[s].y = pos[pos_index[i]]

image position in the typical coordinates in computer graphics

ia_left = int(sti[s].x - img_w/2 + var.width/2)

ia_top = int(sti[s].y - img_h/2 + var.height/2)

ia_right = int(sti[s].x + img_w/2 + var.width/2)

ia_bottom = int(sti[s].y + img_h/2 + var.height/2)

send Interest Area messages, IA labels should start with 1

ia_msg = '!V IAREA RECTANGLE %d %d %d %d %d %s' %(i+1, ia_left, ia_top,

ia_right, ia_bottom, s)

exp.eyelink.sendMessage(ia_msg)

draw landmarks on the the PC screen

landmark_msg = 'draw_box %d %d %d %d 15' % (ia_left, ia_top, ia_right,

ia_bottom)

exp.eyelink.sendCommand(landmark_msg)

label the landmarks with tar, dis_1, dis_2, dis_3

exp.eyelink.sendCommand('draw_text %d %d 15 %s'%(ia_left+120, ia_top+120, s))

IMGload commands for drawing pictures in Data viewer

img_path = '../images/' + img_files[i]

img_x = sti[s].x+var.width/2

img_y = sti[s].y+var.height/2

imgload_msg = '!V IMGLOAD CENTER %s %d %d'%(img_path, img_x, img_y)

exp.eyelink.sendMessage(imgload_msg)

Then, in a for-loop, we send interest area messages to the tracker, draw the backdrop
image on the Host, and record messages that will be used by Data Viewer to load the
background images. It is important to bear in mind that the screen coordinates used by
the tracker have the origin (0,0) at the top-left corner of the screen, whereas that in
OpenSesame by default is the center of the screen. Transformation of the coordinates is
needed here. In the for-loop, we first get the left, top, right, and bottom of each of the
images. Then, use this information to construct interest area messages, and also the
landmark drawing commands. The interest areas are all rectangular ones, for other types
ofInterest Areas, please see the Data Viewer User Manual. With these messages, the
Interest area definitions will be automatically loaded into Data Viewer when an EDF
data file is opened.

As noted above, one can transfer the images being presented to the subject to the Host
PC screen, so the experimenter can examine which object is being fixated during
recording. However, transferring images to the Host is not advisable in cases where a
brief intertrial interval is required. Instead, one can always use the drawing commands
to draw some landmarks on the Host PC. This can be done with the following line of
code in the Run tab. Here we also used the “draw_text” command to show which image
is presented in each landmark box on the Host PC.

draw landmarks on the the PC screen

landmark_msg = 'draw_box %d %d %d %d 15' % (ia_left, ia_top, ia_right,

ia_bottom)

exp.eyelink.sendCommand(landmark_msg)

label the landmarks with tar, dis_1, dis_2, dis_3

exp.eyelink.sendCommand('draw_text %d %d 15 %s'%(ia_left+120, ia_top+120, s))

5.2 Message to mark trial events
In the “MSG_target_word” inline script, we simply wait for a while until the target word is
played in the audio file. Then we send a message to the tracker to mark the onset of the
target word (“grapes”). This message is critical to our data analysis, without this
message, it would be challenging to align the eye movement data to the onset of the
target word.

wait for the onset of the target word, then should the mouse cursor

clock.sleep(var.target_word_onset_time)

send a message to let the tracker know the onset of the target word

exp.eyelink.sendMessage('target_word_onset')

5.3 Trial variables
At the end of each trial, when the el_StopRecording node is called, all variables in the
OpenSesame namespace will be recorded in the EDF data file. These variables are
critical for group-level analysis in Data Viewer and can be accessed from the Trial
Variable Value Editor within Data Viewer.

6 Known issues and limitations
Please bear in mind that the EyeLink plugin is still beta software and we have noticed
the following issues during our testing.

● The .set_pos() function only works when the backend is Psychopy. So, in the Visual
World task, the mouse cursor won’t necessarily be placed at the center of the screen
after the target word has been played.

● Animated calibration targets can be useful for infant studies. The current
implementation of animated calibration targets (videos) presents the frames of the
video as images one-by-one, thus no sound is played during the calibration.

If you run into any issues when using the EyeLink plugin, please feel free to contact
support@sr-research.com.

mailto:support@sr-research.com

